点击右上角微信好友

朋友圈

请使用浏览器分享功能进行分享

正在阅读:解读丨说说“舵”的那些事儿
首页> 军事频道> 军事要闻 > 正文

解读丨说说“舵”的那些事儿

来源:中国军网-解放军报2024-05-17 11:25

  军舰远航,离不开舵。作为舰船上特有的装置,舵的性能直接影响到舰船的安全机动。舵手,则直接掌控着整条船的前进方向。在舰船航行中,舰长往往和舵手待在一起甚至亲自操舵,以便随时调整船的航线。

  汽车驾驶中,有个借用开船的说法:驾驶员靠左的方式叫“左舵”,驾驶员靠右的方式则称为“右舵”。那么,舵到底是什么,是船的方向盘吗?请看本期解读。

  说说“舵”的那些事儿

  ■张志友

  考察归来的“雪龙”号极地考察船。新华社图片

  舵是船的方向盘吗

  很多人会有这样的疑问:舵就是那个像方向盘的装置吗?

  是,也不是。

  舵其实是控制方向的一整套设备,除了常见的舵轮(就是舵手握着的那个像方向盘的东西),还有舵机,以及船尾的片状“舵叶”。这些全部加起来才能控制船的方向。

  说起来,舵的历史可谓源远流长。

  最早的船舵,是由船桨发展而来的。古代,人们用桨在船的一边划动来让船前进。当两侧的桨力不对称时,船会转向,于是人们也学会了用桨来改变航向。

  后来,桨的推进和操作航向这两种功能逐渐分离:人们在船尾设置了专门的桨来控制方向,并扩大了桨叶面积;除了位置改变,操作也从原来的划动变成不离开水面的左右摆动。就这样,桨逐步变成了舵。

  早期的舵是斜伸出船尾的,在船后凸出较多。但这样的尾舵桨也存在一些缺陷,比如遇到浅滩或靠岸时不易操纵。后来,人们又发明了升降舵,可以根据水深调整舵的高低。当船靠岸或驶入浅滩时,可以把舵吊起来,避免被折断;不需要改变航向时,也可以把舵升起来,以减少阻力、提高速度;遇到风浪时,把舵降到最低处,可以减少船体摇晃、降低船随风漂泊的可能性,行驶会更安全。

  到了18世纪,人们发明了舵轮,也就是那个看起来像方向盘的装置。通过这个“方向盘”带动滑轮来操作后面的舵,就比以前省力多了,而且方向盘位置在甲板上的前方,也方便观察海面的情况。

  舵轮要带动链条,把力传导至船尾的舵叶,仍然需要人力。为了更省力,舵轮最开始都做得很大。因为中心半径大,力矩就大,用力就小。不过,即便这样,通常数小时定期换班的操舵,也让水手们累得够呛。

  随着技术发展,机械传动变成了液压传动,操作舵轮才变得不再费力。目前的驾驶台都是电脑控制的电子传动同步电讯号,舵轮可以做得比方向盘还小。舵手只用手指拨动,舵轮就转到需要的角度了。而且在宽阔平稳的海面还可以实现自动驾驶,这大大降低了航行的难度。

  “中国环监001”号船驾驶台,驾驶台中间就是比汽车方向盘还小的舵轮。图片由作者提供

  小小的舵如何操控大大的船

  首先要说一下,虽然随着桨的两种功能分离,慢慢变成调整方向的舵和负责推进的螺旋桨,但它们往往需要联合在一起发挥作用。

  螺旋桨作为推进器,本身也有一些改变方向的功能。比如,直叶推进和喷水推进;还有可调螺距螺旋桨,能通过调节螺距来改变航向和航速;甚至有一种可以360°旋转的吊舱桨,能实现舵和桨的合二为一,根据航行需要来调整推进器的角度,以实现正航、倒航以及战术机动需求。

  那舵本身是如何调整航行方向的呢?

  航行中操纵舵时,它两边的水流就会出现不对称。如果舵偏向右,那右边就是迎流面,左边就是背流面。水流过时,背流面(左边)的流程比迎流面(右边)的流程要长,速度也更快。流速快则意味着压力更低,这时候两边就会有压力差,这股压力差就会推动船体转动。

  速度越快,舵越灵敏。静止时舵就比较笨拙了,没办法让船体转动。而且航行的时候,只要转舵,就相当于增加了阻力,速度就会受到影响。所以,航海中有一个通则,就是尽量“少动舵、小动舵”。

  话说回来,驾驶室中那个操纵舵的手柄看起来小小的,它到底如何影响并操纵万吨巨轮呢?

  舵装置由舵叶、舵机、转舵机构、传动装置、操舵控制系统构成。这一整套装置一起工作,才能在规定时间内改变船舶的航向,并保证其正常航行。

  其中,舵叶通常安装在船尾,使船转动;舵机及转舵机构一般安装在舵机舱内,舵机是动力来源,通过转舵机构将力矩传递给舵杆,从而带动舵叶进行转动;传动装置一般有机械式、液压式以及电动式,它传递操作系统的信号来驱动舵机;操舵控制系统则由舵手或船长操纵舵轮或手柄,对整个舵装置进行控制。

  相对于大船来说,舵叶虽然是小小一片,但由于位于船尾,它与船的重心相距很远,形成的力矩是相当大的,可以很便捷地改变航向。

  为了应对一些紧急情况(比如船舶主电源失效),船上还会设置备用或应急操舵装置,通常由蓄电池或应急发电机等应急电源供电。这样,在紧急情况下也能操纵船舶,临时控制航向,确保航行安全。另外,在满足使用要求的前提下,为了减少和应对水流的力,要尽量减小舵各部分的外形尺寸和质量,提高舵的刚度和强度。

  不仅水面上的船有舵,水下的潜艇上也有舵,而且舵的结构更加复杂。因为潜艇不只是在水的某一水平面上运动,还要在垂直面内上浮或下潜,两种运动可能会同时进行,所以对舵的要求也更高:在航行中,潜艇不仅要保持、还要能迅速改变航向或深度。

  为了控制垂直面内的运动,潜艇一般都装有两对升降舵:首升降舵和尾升降舵。同时,为增加航行稳定性,尾部还设有水平稳定翼。要操控潜艇在水平面内的运动,则要用到方向舵和垂直稳定翼。方向舵用来改变水平面内的运动方向;垂直稳定翼用于保持水平面内的航向稳定性。当方向舵和首尾升降舵成各种不同的舵角组合时,就能灵活地控制潜艇在水面和水下运动。

  船舶完整舵装置。图片由作者提供

  海上掌舵有多难

  我们判断船好不好开,一般会用稳定性和回转性来衡量。稳定性就是船保持既定航向,做直线运动的能力;回转性是指船由直线航行进入曲线运动的能力——通俗一点说,就是船走得直不直,弯拐得顺不顺,能在多大范围内规避碰撞等。

  为什么要首先强调船的“稳定性”?这是因为海上的不稳定因素太多了。外界干扰如风、浪、流等,都会让船偏离航向。其复杂程度,远非开车能比拟——开车的时候,默认状态就是直走,但船要保持直行向前,需要驾驶者不断地操舵。所以,操舵的频次、角度是衡量稳定性的重要标准。

  稳定性好的船,操舵的频次相对更低,航迹也更接近直线。而稳定性不好的船,需要更高频次地纠正航向,航线也因此更曲折,实际的航行距离更长。通常,如果平均操舵频率不大于每分钟4~6次,平均转舵角不超过3°到5°,就可以认为船的航向稳定性是符合要求的。

  同时,不断操作也增加了操纵装置和推进装置的功率消耗。由于操舵增加的功率消耗,一般占主机功率的2%~3%。而稳定性不好的船,此处增加的功耗可能高达20%。

  第二个衡量标准“回转性”,则与船的避让、靠离码头、灵活掉头等密切相关。船的回转性好不好,要看“定常回转直径”。这个指标很重要,甚至曾是衡量船舶回转性的唯一指标。

  船进入到定常阶段后的回转圈的直径,称为定常回转直径。满舵条件下的定常回转直径称为最小回转直径,定常回转直径与船长的比值称为相对回转直径。

  怎么判断回转性好不好呢?可以根据最小相对回转直径来判断。“5”是个分界线。对于回转性极佳的小型快艇,这个值只有“3”;而船型细长、掉头困难的驱逐舰则可能达到“10”。事实上,大部分船的值都在“5~7”之间。

  回转可不只是“掉个头再转一圈”那么简单。回转时,船的速度会降低。在小舵角回转时,航速变化不大;但在满舵回转时,因为阻力增大,大大消耗了螺旋桨的推力,船速甚至会减小到回转初速的40%左右。对于军舰来说,回转性灵活与否,直接决定着其战斗力的高低,特别是在近距离海战的情况下。

  在回转时,船还会出现横倾。这是由于船体水动力、舵力、离心力等不是作用在同一高度而造成的。就像大客车转弯过快时会翻一样,如果横倾角过大,甚至会造成船舶倾覆。所以,回转时转舵的速度,直接关系到船的安全。船在海上遇到困难需要变向、掉头,或在靠离码头时要灵活转身,都是在这个看似简单的动作基础上来做的,这也是回转性这么重要的另一个原因。

  值得注意的是,船的稳定性和回转性还会互相制约,所以在舰船设计时,应根据其用途和航行区域对操纵性的要求做出不同的选择。比如,对于近岸航行及反水雷舰艇,由于航向变动频繁,对回转性要求更高;而设计驱护舰时,则需要考虑到它常常以较高的航速保持直航,因此对稳定性要求更高。

  理解了稳定性和回转性之后,也就不难理解掌舵开船比想象中要难很多吧。

[ 责编:丁玉冰 ]
阅读剩余全文(

相关阅读

您此时的心情

光明云投
新闻表情排行 /
  • 开心
     
    0
  • 难过
     
    0
  • 点赞
     
    0
  • 飘过
     
    0

视觉焦点

  • 海南白沙:兰花产业助力乡村振兴

  • 对口援疆助力戈壁兴建智慧农业植物工厂

独家策划

推荐阅读
据中国载人航天工程办公室消息,根据计划安排,神舟二十号航天员乘组将于近日择机实施第二次出舱活动。目前,空间站组合体运行稳定,神舟二十号航天员乘组在轨工作已满两个月,身心状态良好,已做好出舱活动各项准备工作。
2025-06-26 09:48
6600万年前,希克苏鲁伯小行星撞击地球导致非鸟类恐龙灭绝,而就在撞击点附近,一种神秘的夜蜥蜴可能是唯一幸存下来的陆生脊椎动物。白垩纪末期,一颗巨型小行星撞击了墨西哥尤卡坦半岛附近的区域,形成了一个直径超过150公里的陨石坑,导致全球大多数动植物物种灭绝。
2025-06-26 09:47
在全球面临日益严峻的生态危机之际,中国科学院院士、中国科学院生态环境研究中心研究员傅伯杰等提出了一个衡量人与自然共同繁荣程度的全球框架。论文合作作者、联合国开发计划署人类发展报告办公室主任Pedro Conceicao表示,面对当今严峻的地球系统变化,我们必须把人与自然健康、互惠的关系纳入发展愿景。
2025-06-26 09:46
黑土地被誉为“耕地中的大熊猫”,是世界上最肥沃的土壤。这项调查系统查清了我国东北典型黑土区地表基质资源“家底”,实现了东北黑土地地表基质层的首次系统调查与深度解剖。
2025-06-26 09:41
记者邱玥25日从中国海油获悉,我国首个自营超深水大气田“深海一号”二期项目全面投产。 目前,“深海一号”大气田已经达到最高产能设计状态,年产气量有望超过45亿立方米。
2025-06-26 09:40
由美国国家科学基金会和能源部支持的薇拉·C·鲁宾天文台,首次捕捉到的太空景象呈现出一场由恒星“托儿所”及邻近星系的密集星团构成的粉蓝视觉盛宴。鲁宾天文台的科学团队还开发了面向公众的工具“天空查看器”,用户可通过平移和缩放功能探索这些超高分辨率图像中的恒星和星系。
2025-06-25 09:46
中国海油25日宣布,公司在南海水域的“深海一号”大气田二期项目全面投产,标志着我国最大海上气田建成。“深海一号”大气田分一期和二期开发建设(一期于2021年6月投产),探明天然气地质储量超1500亿立方米,最大作业水深超1500米,最大井深达5000米以上,是我国迄今为止自主开发建设的作业水深最深、地层温压最高、勘探开发难度最大的深水气田。
2025-06-25 09:33
2017年启动的第二次青藏高原综合科学考察,为新一代草地植被图的绘制提供了新的契机。“我们共识别出65种主要草地类型,其中高山嵩草草甸、紫花针茅草原、矮生嵩草草甸、垂穗披碱草草甸和线叶嵩草草甸这5个群系分布最广。
2025-06-25 09:30
6月24日,“应急使命·2025”极端灾害事故场景新质救援能力检验性演习在黑龙江省东宁市、河南省濮阳市等地举行。“源网荷储”应急供电中,国家电网运用新技术、设备,实现小型水电站“黑启动”“光伏+储能”协同供电,保障重点区域电力供应。
2025-06-25 09:24
研究团队通过发育表达分析、原位杂交和免疫组化技术,在甜菜孢囊线虫早期寄生阶段鉴定出两个关键分泌效应蛋白——Hs28B03和Hs8H07。该研究首次发现,植物寄生线虫会“劫持”植物细胞的“垃圾处理系统”——泛素化系统来摧毁免疫。
2025-06-25 09:23
24日,记者从中国农业科学院棉花研究所获悉,中国农业科学院棉花研究所、西部农业研究中心棉花分子遗传改良创新团队杨作仁研究员与中国农业科学院生物技术研究所柳小庆研究员,合作创制了可生产虾青素的工程棉花。
2025-06-25 09:22
“智慧光源大脑”是国内首个同步辐射人工智能数据解析平台,能够更高效地处理同步辐射实验产生的海量复杂数据。
2025-06-24 09:43
新修订的《中华人民共和国科学技术普及法》实施半年,近日,有媒体采访多位科研人员,梳理新科普法落实效果。受访的多位科研人员表示,新科普法为科研人员开展科普工作提供了制度保障。
2025-06-24 04:50
6月初,依托东南大学共建的南京紫金山实验室发布全球首个6G广域低空覆盖的无蜂窝通智感融合外场试验网,赋能低空经济、数字能源、智能制造等应用场景,有望催生千亿级产业链,助力南京打造“6G之城”。这是东南大学勇挑硬核科技创新大梁,支撑服务新质生产力发展的生动缩影。
2025-06-24 05:00
从国铁集团获悉,近期,沪昆高铁杭州东至长沙南段(以下简称“沪昆高铁杭长段”)安全标准示范线建设拉通试验圆满成功,复兴号动车组列车最高试验时速达385公里,各项设备指标表现良好。
2025-06-24 05:00
构建新农科人才“四新”培育目标体系。
2025-06-24 03:45
专家建议,预防糖尿病足,糖尿病患者每日需用38℃以下温水泡脚,擦干后检查趾间有无破损,穿透气棉 袜与宽松鞋,并每年至少做一次足部血管神经专项检查。基因疗法主要是通过刺激血管生成来改善近端肢体的血液流入,从而改善单个血管小体中的血液再分。
2025-06-24 09:31
既能上天飞行,也能踏海遨游,我国完全自主研制的AG600“鲲龙”飞机,正是这样的“跨界”航空装备。近期,“鲲龙”喜讯频传——4月20日,获颁中国民航局型号合格证;5月6日,批产首架机总装下线;5月18日,顺利完成生产试飞;6月11日,获颁中国民航局生产许可证。
2025-06-23 09:32
记者从展会上感受到,过去几年氢燃料汽车的发展倒逼氢能产业的发展,而今,氢能的应用从燃料电池车的单一赛道向其他行业辐射。丰田智能电动汽车研发中心(中国)有限公司丰田中国氢能事业总部领域长真锅晃太表示,中国实现2035年百万辆燃料电池汽车规模的目标面临挑战。
2025-06-23 09:31
近日,解放军总医院第五医学中心血液病医学部高晓宁教授团队和周杰教授团队合作,在国际著名期刊《Oncogene》发表突破性研究成果,首次揭示PHF19基因在急性髓系白血病中的“致命开关”作用,为破解白血病复发耐药难题带来全新解决方案。团队首次阐明WTAP-PHF19调控轴的双重表观遗传调控机制,这相当于找到了癌细胞的“能量总控开关”。
2025-06-23 09:29
加载更多