点击右上角微信好友

朋友圈

请使用浏览器分享功能进行分享

正在阅读:美空军大力推动任务式指挥透视:从集中式指挥转向任务式指挥
首页> 军事频道> 国际军情 > 正文

美空军大力推动任务式指挥透视:从集中式指挥转向任务式指挥

来源:解放军报2023-08-25 10:17

   从集中式指挥转向任务式指挥

   ——美空军大力推动任务式指挥透视

   费爱国

 

   引言

   20世纪90年代以来,为应对战争形态转变带来的矛盾挑战,美空军大力推动作战指挥方式变革,在局部战争中积极实践且取得了一定战果。与此同时,美空军不断强化先进指挥与通信技术结合,力图在战场上掌控决策先机。在作战思想得到实战检验,技术水平持续提升的背景下,美空军于2021年对基本条令进行修改,从集中式指挥全面转向任务式指挥。美空军此举引发了世界各国军队的高度关注,并把关于指挥方式变革的话题推向了前沿。

   任务式指挥是什么

   “任务式指挥”这个概念肇始于19世纪初,彼时的普鲁士军事理论家们非常关注指挥员在战场上的作战主动性发挥和创造性思维等问题,任务式指挥在此背景下应运而生。20世纪80年代后,任务式指挥被许多西方国家军队所采用,逐渐进入现代军事行动并成为训练基本术语。

  虽然任务式指挥历史由来已久,但其核心要义却一直保持稳定,并没有太大变化。任务式指挥主张在充满不确定性和混沌性的战场上,要充分发挥一线指挥员主动性,以夺取决策优势。一般认为,在充满盖然性的战场上,一线指挥员往往能更真实地了解当前态势,因而常常比他们上级更有能力作出符合实际的决策。

  值得注意的是,美空军条令原文中并没有任务式指挥的明确定义。通常认为,任务式指挥是明确作战意图、作战指导、作战任务和相关资源,不规定完成任务具体行动方法的指挥方式,是赋予下级自主权、使用任务型命令、以相互信任为基础的分散式指挥。通俗地讲,任务式指挥就是规定任务(“做什么”、“为什么做”),不规定手段(“怎么做”),讲求充分发挥一线指挥员主观能动性的指挥方式。

  相比传统指挥方式,任务式指挥相当于在各个层级上都装上了“大脑”。想要理解其内涵,还要与美空军以往的指挥方式进行对比。美空军传统意义上的集中式指挥主要包含两部分:集中控制、分散执行。集中控制,就是中心节点进行集中指挥和控制。集中指挥是指美空军通过空中作战中心来产生、调整、修正决策。集中控制是指地面或空中指挥节点,对所辖作战平台进行监视、纠偏、控制。分散执行,则是作战平台基于空中任务指令,在数据链控制下各自去执行任务。

  任务式指挥的实现途径体现为“集中指挥、分布控制、分散执行”。相较以前,其赋予了集中指挥新的含义,重点放在了全局性决策问题上。这也给分布控制赋予了新的内涵,不光是传统行为控制,而是更加关注行动层面决策。此外,分散执行还包括在执行层面要能够根据任务型指令去决策。

   为什么要转向任务式指挥

   美空军为什么要全面转向任务式指挥呢?

  传统的“集中控制、分散执行”是有前提条件的,那就是完好的集中指控机构和通信网络。然而,随着作战方式变革,现代战场上,指控和通信两类核心节点的生存能力日渐堪忧。一旦地面指控中心和通信枢纽被破坏乃至卫星通信和导航系统失效以后,整个战场或将彻底陷入无序状态。鉴于此,美空军不得不进行变革。

  然而,在指控领域进行变革,是选择增加防护能力,还是采取别的模式来应对威胁呢?从实践看,美空军选择了升维思考,即借鉴“你打你的,我打我的”的理念,创新指控模式。美空军升维包括两个方面:在决策分布方面,通过指控核心节点的决策能力拆分到下级指挥机构,使得各个节点具备进行任务意图分析和任务规划决策的能力,使对手不知道对付谁。在决策优势方面,主要是使前端节点具备决策权和决策能力,能够更快地对战场变化情况作出反应,进而通过不同层级的“OODA”循环增强决策能力,快速形成决策优势。

  要实现作战方式的变革,须臾离不开技术手段的支撑。近年来,随着技术迭代升级,外军各层级指控系统建设速度变快,辅助决策能力大大提升,构建分布式决策节点成为可能。敏捷开发和智能决策技术的发展,帮助软件快速交付,提升了下级机构决策能力。先进战斗机广域传感、通信能力大大提升,各类作战平台未来可以自行构建起链条更短、更靠近末端的“OODA”循环链路。同时,随着轻型化平台末端指控能力的提升,将使得小平台在机动性强的基础之上,控制协调和决策能力大大增强,将有力支撑“OODA”循环的运转速度提升。

  当前,随着联合全域作战不断深化发展,客观要求在任务层面上要实现多个作战域作战力量之间的密切协同。而面向联合全域作战,美空军需要与其他军种建立更加紧密的合作关系。为了融入整个联合全域作战体系,美空军全面转向任务式指挥也就成为题中应有之义。

   任务式指挥会带来什么影响

   美空军全面转向任务式指挥会给自身以及未来战场带来哪些变化呢?

   “泛在中心”指控形态,使得体系韧性增强。任务式指挥通过构建“泛在中心”指控形态,使得决策中心从原来的核心节点,演变为无数个泛在的指挥控制节点,提高了指挥体系的生存能力。一方面,通过决策中心的分布式部署,增加了对手攻击的难度。在部分指控节点被摧毁的情况下,依然能够通过组合维持作战体系运转,提升了作战体系的韧性。另一方面,通过指控能力的泛化,“哪儿都是核心,哪儿又都不是核心”,极大地增加体系破击复杂度,提升了体系的生存能力。

   “分布进攻”组织模式,使得作战指挥攻其不备。任务式指挥通过“以决策为中心”构建了从指控核心节点、作战基地到作战平台的多层级的决策中心,在进攻维度形成“分布进攻”的组织模式,使得对手猝不及防,难以应对。一是对时空相对分散的兵力,在统一作战意图的约束下,通过分布进行控制,达成在隐蔽意图的情况下,形成兵力的灵活自主性和作战意图的突然性。二是在兵力分散的状态下,通过指挥控制能力的泛化,实现跨域作战能力的融合。以美空军当前力推的穿透性制空为例,其通过在多方向分布式作战,能够大大地提升作战意图的不确定性,让对手防不胜防。

   “OODA”循环运转优势,实现作战行动以快打慢。任务式指挥通过作战组织形态的变革,带来“OODA”循环各个环节能力的提升,实现以快打慢,以优制劣。在观察环节,增加了对手探测的难度;在判断环节,增加了对手判断的复杂性,降级了对手判断能力;在决策环节,提供了更强的决策能力,加速了己方决策速度;在行动环节,增加了行动的选项,增加了对手防御的难度。此外,任务式指挥变革了“OODA”循环运转方式,使得各个层次的“OODA”循环之间能够实现更好地衔接,加速了多层级“OODA”循环的协同运转,在整体作战指挥上具备了以快打慢的优势。各层级循环发生的主体产生变化,使得行动中“OODA”循环可以并行地运转,带动更多的任务层“OODA”循环运转,作战指挥能力大大提升。另一个变化是各层级“OODA”循环的决策权限和方法发生了变化,更多的作战活动可以不通过上一级“OODA”循环,直接进行决策,加快了己方循环速度。任务式指挥使得美空军作战能力增强,美空军正企图在作战中让对手看不懂、摸不透、打不着、防不住。

   把准任务式指挥的关键

  任务式指挥是指挥控制领域的一种新方法。其给现代战场带来的冲击正逐渐显现,各国都在加紧该领域研究追踪,力求争取最大主动。

  汲取传统智慧,发扬互信、担当、主动作为的作风。任务式指挥与传统意义上的分散式指挥,其目的基本一致,都是要让下级指挥员拥有更多的自主权,在快速变化的战场中高效决策,以夺取决策优势。回顾我军战史,1948年10月,辽沈战役中的胡家窝棚之战某种意义上可称为“任务式指挥”的成功典范。这场经典战例中反映出的我军各级互信、担当、主动作为的作风,在现代战争条件下仍然具有重要的借鉴意义。继承发扬好我军优良传统作风,要从日常演训中做起。在部队日常演训和管理中,存在着“领导不放手,基层不上手”的现象。长此以往,进入实战,行动若超出指示范围,指挥员通常会求助于上级,请求许可。然而,未来战场态势瞬息万变,指挥员如若习惯性事事依靠上级指示,自主指挥能力不足,难免会落于下风。这种能力需要在演习训练中一点一滴地积累和培养,需要在日常演习训练当中逐渐养成。

  借鉴相关作战理念,优化完善指挥控制组织模式。现代战争条件下,组织大规模、长周期、高强度的空中作战并非易事,作战指挥能力上不去,一切都无从谈起。从外军的发展实践来看,其受两方面制约的矛盾日益明显。一是作战指挥控制流程不够完善,分层分级的指挥模式不够健全。二是以控制为主的指控方式无法适应现代高强度空中对抗。那么,面向未来战争,该如何去优化完善指挥控制模式呢?有效的办法是,应充分考虑不同强度的对抗环境,借鉴任务式指挥的相关理念,优化完善原有指挥模式,构建适应未来信息化智能化战争的指控模式。

  打造开放系统架构,为指控系统灵活重组打下坚实基础。要实现任务式指挥,需要整个体系的指控能力升级。一方面,需打造开放式架构,提升系统灵活组装和适变重组能力。另一方面,需推动节点要素化,促进数字空间作战资源重组。实现作战实体的节点要素化,就是将作战实体进行数字化、网络化、服务化、标准化,使其更容易便捷地被其它平台调用。

[ 责编:邢彬 ]
阅读剩余全文(

相关阅读

您此时的心情

光明云投
新闻表情排行 /
  • 开心
     
    0
  • 难过
     
    0
  • 点赞
     
    0
  • 飘过
     
    0

视觉焦点

  • 周末冰雪乐

  • 宁夏银川:冬日西夏陵

独家策划

推荐阅读
12月26日,我国首个覆盖6种轮状病毒血清型的六价轮状病毒疫苗在湖北武汉完成首剂接种。
2025-12-29 10:23
美国哈佛—史密森尼天体物理中心天文学家利用美国国家航空航天局(NASA)的哈勃空间望远镜,首次观测到围绕年轻恒星运行的迄今最大原行星盘——IRAS 23077+6707。
2025-12-29 10:10
2025年12月27日0时07分,我国在西昌卫星发射中心用长征三号乙运载火箭成功发射风云四号C星(03星),卫星顺利进入预定轨道,发射任务取得圆满成功。
2025-12-29 10:07
中国科学院空天信息创新研究院研究员王振友团队联合四川省文物考古研究院等机构的科研人员,自主研制了显微时间门控拉曼光谱仪,并利用该仪器对三星堆出土的4块象牙碎片进行无损检测,揭示了象牙在长期地质作用下的老化过程。
2025-12-29 10:01
近期,工信部发布《场景化、图谱化推进重点行业数字化转型的参考指引(2025版)》,聚焦14个重点行业,绘制企业数字化转型“场景导航图。
2025-12-29 09:59
当日,石景山区AI for Science平台正式上线,该平台由枫清科技携手火山引擎联合打造,以AI驱动科研机构与企业的科研效率革新,降低科研门槛。
2025-12-27 20:21
记者25日从国防科技大学获悉,该校磁浮团队近日在磁悬浮试验中,成功在两秒内将吨级试验车加速至700公里/小时。测试速度打破了同类型平台全球纪录,成为全球最快的超导电动磁悬浮试验速度。
2025-12-26 10:08
12月24日,中国科学院重大科技基础设施“载人潜水器与海上作业母船”用户委员会2025年度会议披露:我国“深海勇士”号、“奋斗者”号、“蛟龙”号三大载人潜水器全年完成314次深潜,累计下潜总量达1746次,2026年将向2000次目标稳步迈进。
2025-12-26 10:05
日前,国家自然科学基金委员会在北京召开国家自然科学基金首批重大非共识项目遴选会议,标志着重大非共识项目正式启动试点。国家自然科学基金委员会将深入实施并持续优化重大非共识项目遴选机制,引导广大科研人员聚焦高水平原创性科研工作狠下功夫。
2025-12-26 09:59
其实,流感和普通感冒不是一回事,用药自然不能一概而论。流感一来往往会发高烧(体温39—40摄氏度),浑身肌肉酸痛、没力气,症状重;普通感冒多是鼻塞、流鼻涕、喉咙痛,发烧也多是低热,症状轻。
2025-12-26 09:58
一项近日发表于《科学》的研究指出,像ChatGPT 这样的人工智能(AI)工具正在大幅增加论文产量。此类文本数量的不断增加,使同行评议、资金决策和科研监督变得复杂,因为越来越难区分有意义的研究成果和低价值的内容。
2025-12-26 09:56
传统探查手段在如此深的地下几乎“失明”,无法精准捕捉地质特征。这项工程的成功实施,填补了我国超深埋输水隧洞注浆治理技术的空白,标志着我国在深埋地下工程地质探查与注浆治理领域达到国际领先水平。
2025-12-25 09:42
24日上午,随着最后一方混凝土浇筑完成,宁波舟山港六横公路大桥二期工程——青龙门特大桥双主塔成功封顶。青龙门特大桥位于浙江舟山,横跨青龙门水道,连接宁波梅山岛与舟山佛渡岛。
2025-12-25 09:45
24日,我国最大超深凝析气田——中国石油塔里木油田博孜—大北气田天然气年产量突破100亿立方米,生产凝析油91.89万吨。为攻克上述难题,塔里木油田持续攻关,推动气田开发实现从深层向超深层、从高压向超高压、从优质储层向复杂储层的三大跨越。
2025-12-25 09:44
前不久,“科学家预测恐龙复活有望实现”的话题冲上热搜,引起舆论关注。
2025-12-25 10:20
一项研究显示,科学家发现新物种的速度比以往任何时候都快——每年发现的新物种超过1.6万个,并且这一趋势没有放缓的迹象。除了医学,许多物种的适应特性还可以启发人类的发明创造,例如模仿壁虎垂直爬墙的“超强黏附”脚的材料。
2025-12-25 09:47
”这是中国科学院院士、北京航空航天大学研究生院原副院长高为炳生前在自述中留下的一句话。而在高为炳的学生看来,他之所以能在短时间内取得那么多成绩,根源就在于几十年的厚积薄发。
2025-12-25 09:46
昆虫性信息素相当于昆虫之间的“气味语言”,具有靶向性强、用量少、对环境友好等优点,是当前绿色植保的重要策略之一。
2025-12-24 10:05
作为中国科学院“十四五”重大项目之一,2022年7月27日,由中国科学院力学研究所(以下简称力学所)抓总研制的“力箭一号”火箭首飞成功。
2025-12-24 09:59
中国科学技术大学(以下简称中国科大)教授潘建伟、朱晓波、彭承志和副教授陈福升等基于超导量子处理器“祖冲之3.2号”,在码距为7的表面码上实现了低于纠错阈值的量子纠错,演示了逻辑错误率随码距增加而显著下降。
2025-12-24 09:58
加载更多