点击右上角微信好友

朋友圈

请使用浏览器分享功能进行分享

正在阅读:浅析高超声速武器对未来作战的影响
首页> 军事频道> 军事要闻 > 正文

浅析高超声速武器对未来作战的影响

来源:解放军报2022-01-11 09:08

调查问题加载中,请稍候。
若长时间无响应,请刷新本页面

改变未来战争游戏规则?

——浅析高超声速武器对未来作战的影响

  近年来,随着超燃冲压发动机、热防护材料、制导与控制等高超声速关键技术的进步,高超声速武器已逐步由想象变为现实。与声速/亚声速武器相比,高超声速武器所具有的独特优势,将对未来作战胜负进程有重要影响,具体体现在四个方面。

  高速度与实时感知叠加增效,显著缩短作战进程。高超声速武器的研发源于对高价值时间敏感目标的打击需求。打击高价值时间敏感目标,需要感知快、决策快、行动快,尽量缩短“OODA”杀伤链时间。在传感器技术、网络信息技术、人工智能技术的推动下,“OODA”杀伤链正向跨域杀伤网转变,以形成融陆、海、空、天、电、网多域多点于一体的情报信息感知网络,使各种传感器分工协作,信息高速流动、实时共享。跨域杀伤网利用人工智能与机器学习程序,处理、分析、利用情报信息的速度大幅提升,通过快速识别、快速决策,为高超声速武器作战提供及时、丰富、翔实的情报信息支撑,使传感器到射手的时间由数小时、数十分钟缩短至几分钟。加之高超声速武器飞行速度在5马赫以上,飞行1000公里不到10分钟,明显快于声速或亚声速武器,大幅度缩短了打击时间,对目标基本实现“发现即摧毁”。可以看到,在杀伤网的高效支撑下,凭借极快的飞行速度,高超声速武器将显著缩短作战进程。

  高速度与多平台搭配增效,大幅拓展作战空间。高超声速武器大致可分为高超声速助推滑翔导弹、吸气式高超声速巡航导弹、可重复使用的高超声速侦察打击平台三类。高超声速助推滑翔导弹主要利用火箭发动机助推升空,再由滑翔弹头在临近空间做无动力滑翔,飞向目标;吸气式高超声速巡航导弹先由火箭发动机助推至超燃冲压发动机点火速度后,再利用超燃冲压发动机推进飞行;可重复使用的高超声速侦察打击平台可以在空天巡飞、天地往返,能够多次重复使用。这些武器的技术难度远远超出普通巡航导弹、弹道导弹,而且射程比较远,大多数在数百至数千公里,可以从不同方向、不同地域对目标实施打击。此外,高超声速武器除了可以像普通巡航导弹、弹道导弹那样从战机、舰艇、潜艇、陆基发射单元发射外,还可从太空、临近空间发起攻击。显而易见,高超声速武器使得作战空间大幅拓展。

  高速度与变轨迹耦合增效,突防“如入无人之境”。除了飞行速度极高外,高超声速武器飞行的另一特点是轨迹多变、难以预测。高超声速助推滑翔导弹可大范围机动,既可在纵向随意完成“拉起-下降”的动作,还可在横向数百甚至上千公里范围灵活机动,侧向迂回,“勾拳式”摆击,飞行轨迹复杂多变,落点难以判断;吸气式高超声速巡航导弹和高超声速飞机在超燃冲压发动机的推进下,飞行轨迹更是千变万化。同时,在极高飞行速度下,高超声速武器不断对大气分子进行强激波压缩和高速摩擦,从而在其周围形成等离子体鞘套,当电磁波穿越等离子体鞘套时会产生反射、吸收,导致雷达散射特征较弱,甚至还会产生黑障现象,致使雷达难以探测。另外,高超声速武器大部分飞行高度在临近空间范围,远低于弹道导弹的飞行高度,受地球曲率的影响,地基或海基对空探测雷达对其探测距离大大缩短,对手的防御系统响应时间窗口大幅度压缩。而且,即使防御系统探测到了高超声速武器,由于高超声速武器飞行中的气动光学效应,使拦截武器探测的目标图像发生偏移、抖动、模糊,难以有效跟踪、识别、定位,对其进行有效拦截的概率极低。由此可见,由于高速度与变轨迹的耦合增效,高超声速武器突防对手防御系统可以说是“如入无人之境”。

  高速度与高精度融合增效,大大提高毁伤效能。正因为高超声速武器具有极高的速度,其对目标的毁伤效能大大提高。当高超声速武器携带钻地弹实施打击时,钻地深度是声速/亚声速武器的好几倍;当高超声速武器携带动能弹实施打击时,通过巨大的动能释放,在打击点下方形成强烈的破坏效应,其破坏范围远大于同质量的声速或亚声速武器。更为重要的是,高超声速武器中运用了大量制导、控制新技术,保证了它在极高速度下还具有很高的命中精度。据悉,外媒在2020年就曾报道称,高超声速滑翔弹头以不低于5马赫速度,在距离靶标不到20厘米处命中。可以看到,高超声速武器通过高速度与高精度融合增效,大大提高了对目标的毁伤效能。(唐蓉)

[ 责编:丁玉冰 ]
阅读剩余全文(

相关阅读

您此时的心情

光明云投
新闻表情排行 /
  • 开心
     
    0
  • 难过
     
    0
  • 点赞
     
    0
  • 飘过
     
    0

视觉焦点

  • 走近南京航空航天大学飞行器适航技术专业

  • 西延高铁渭河特大桥连续梁合龙

独家策划

推荐阅读
陕西首座抽水蓄能电站——国网新源陕西镇安抽水蓄能电站4号机组12日正式投入商业运行,实现陕西电网大型调节电源的新突破。
2024-12-13 04:20
12月12日15时17分,我国在酒泉卫星发射中心使用长征二号丁运载火箭/远征三号上面级,成功将高速激光钻石星座试验系统发射升空,5颗卫星顺利进入预定轨道,发射任务获得圆满成功。
2024-12-13 04:20
日前召开的中共中央政治局会议强调,要以科技创新引领新质生产力发展,建设现代化产业体系。科技创新通过补齐技术短板、拉长优势长板、锻造未来新板,推动产业创新,引领现代化产业体系建设。
2024-12-13 10:21
《自然-医学》12月12日发表年度预测文章,介绍了未来一年可能对医学产生影响的11项临床试验。
2024-12-13 10:16
如果把大脑比作一座繁华的都市,那么每个角落都有一群默默奉献的“人”,共同维持着这座都市的活力与秩序。后来,在美国宾夕法尼亚大学深造期间,罗敏敏更是贯彻了跨学科的想法。
2024-12-13 10:15
中成药有着悠久的历史、广泛的应用,在疾病防治、保障人民群众健康方面发挥了重要作用。
2024-12-12 10:05
近年来,毫米波雷达技术被用于心脏活动监测,展现出非接触、便捷和高精度的优点,但面临“呼吸谱泄漏”这一重大挑战。基于这两个现象,研究团队将心跳特征提取频段从基频转移到高阶谐波频段,从而有效消除了呼吸谐波的干扰,显著提升了监测精度。
2024-12-12 09:46
“化石研究发现,华龙洞人是迄今东亚地区呈现出智人特征最多、年代最早的从古老型人类向智人过渡的古人类。随着更多身体部位的化石不断被发现,30万年前华龙洞“居民”的体貌特征逐渐清晰。
2024-12-12 09:45
加快提升机器人产业总体发展水平的同时,构建产业创新体系、加强产品应用推广等也成为多方发力布局重点。同日,豪森智能(688529)表示,目前已同步开始在人形机器人应用与装备领域进行技术储备,可提供人形机器人、AMR机器人应用集成解决方案,并同步布局人形机器人生产线、测试台。
2024-12-12 09:35
美国宾夕法尼亚州立大学和哥伦比亚大学科学家携手,首次观察到一类特殊准粒子——半狄拉克费米子。2008年和2009年,来自法国南巴黎大学和美国加州大学戴维斯分校等机构的科学家,首次从理论上预言了半狄拉克费米子的存在。
2024-12-12 09:31
据新华社电联合国环境规划署12月10日线上公布2024年“地球卫士奖”得主,中国科学家卢琦因助力中国扭转土地退化趋势、减少沙化面积,获得“地球卫士奖”中的“科学与创新奖”。卢琦表示,此次获奖是对中国林草事业特别是治沙科技工作者的高度肯定和激励。
2024-12-11 10:12
中国科学技术大学教授李微雪的电脑里有个文件夹,保存了同一论文的329个不同版本。值得一提的是,他们还提出了“强金属-金属作用”原理性判据,即当两种金属间作用强于氧化物中金属自身相互作用时,氧化物载体将包覆金属催化剂。
2024-12-11 10:12
到医院看病,迎面而来的可能是智能机器人;检查结果出来,人工智能迅速给出诊断意见……随着AI技术飞速提升,诊疗应用越来越广。上述由医生团队发起、参与研发的人工智能医学大模型,在上海一家医院已经投入应用,给医生提供辅助。
2024-12-11 10:11
日冕是太阳大气的重要组成部分,那些对地球空间环境有重大影响的太阳爆发事件,大多起源于日冕中。
2024-12-12 10:16
根据《自然》杂志10日发表的一篇论文,谷歌最新一代量子芯片纠错能力实现突破,即将错误抑制在一个关键阈值以下。美国谷歌研究院此次报告了名为“Willow”的最新一代超导量子处理芯片架构,该芯片能实现低于表面码关键阈值的量子纠错。
2024-12-11 10:10
“本次全国农业种质资源普查,是新中国成立以来实施规模最大、覆盖范围最广、参与人数最多的一次全国性农业普查。“这次普查全面摸清了种质资源的家底,抢救收集保护了一批优异种质资源,为提升种业自主创新、加快种业振兴提供了重要支撑。
2024-12-11 10:10
香港目前规模最大的人工智能超算中心12月9日起正式投入服务,为本地高校、研发机构、企业等提供算力支持,助力香港国际创科中心建设。
2024-12-10 10:10
西湖大学生命科学学院教授俞晓春团队在解析小鼠参考基因组方面取得重要突破,获得了完整的端粒到端粒小鼠参考基因组序列,意味着人类历史上第一次“看清”了小鼠基因组DNA全貌。
2024-12-10 10:10
中国有两位学者入选,分别是中国人民解放军海军军医大学教授徐沪济和中国科学院国家天文台研究员、嫦娥六号任务工程副总设计师李春来。
2024-12-10 10:09
在完成“绕、落、回”三步走规划后,我国正在实施探月工程四期任务,目标是在月球南极区域建设国际月球科研站基本型。
2024-12-10 10:07
加载更多